
D
RA
FTA Study of the rsqrt and rcp Instructions on

Intel and AMD Platforms

J.M. Arnold

February 20, 2016



D
RA
FT

Background

Consider this short program (provided by V. Innocente):

#include <cmath >

#include <cstdio >

int main(int n, char* v[]) {

float fn = n - 1.f;

float k = 0.1f + fn;

float q = 1.f/std::sqrt(k);

prini("%a %a\n",k,q);

return 0;

}

When run with no arguments, it should compute the IEEE 754 Binary32 (i.e.,
single precision or float) value of 1/

√
0.1. When compiled with gcc 5.2.0 and

the -O2 -mavx options, the generated code uses a sqrt ss instruction followed
by a div ss instruction to compute the result. However, if the -Ofast option is
used instead of -O2, the generated code computes the result using an rsqrt ss

instruction followed by a single Newton-Raphson interation. In this latter case,
the output of the exact same executable produces different results depending on
whether it is executed on an Intel CPU or an AMD CPU:

• Intel: q = 0x1.94c580p+1

• AMD: q = 0x1.94c582p+1

Note that there is a 2 ulp difference in the results.
Another observation: when compiled with icc 16.0 and the -Ofast -mavx

options, the result is different from that obtained when compiling with gcc

5.2.0 even when run on the same hardware platform.
Table 1 shows the program results obtained on Intel and AMD processors

when compiled with gcc and icc, both using the -Ofast -mavx options.

gcc on Intel 3.16227722 0x1.94c580p+1 0x404a62c0
gcc on AMD 3.16227770 0x1.94c584p+1 0x404a62c2
icc on Intel 3.16227746 0x1.94c582p+1 0x404a62c1
icc on AMD 3.16227770 0x1.94c584p+1 0x404a62c2
Exact 3.16227770 0x1.94c584p+1 0x404a62c2

Table 1

The goal of this invesigation was to explain these various differences.

Reciprocal square root

Let x be a positive non-zero normal IEEE 754 Binary32 number with x = 2em
where 1 ≤ m < 2. Find the integer l such that 1 ≤ x′ = 4lx < 4. Then

1√
2
<

1√
x′
≤ 1 if x′ ∈ [1, 2)

1



D
RA
FT

1

2
<

1√
x′
≤ 1√

2
if x′ ∈ [2, 4)

Because scaling by a power of 2 is an exact operation in IEEE 754 binary arith-
metic, we can, without loss of generality, restrict our analysis to the behavior
of rsqrt in [1, 4).

To compute 1/
√
x′, we take an initial estimate y0 ≈ 1/

√
x′ and use a Newton-

Raphson interation to improve that estimate. If we use Newton’s method to find
a root of the function f(y) = 1/y2 − x′, we obtain the recurrence

yn+1 ← (3yn − x′y3n)/2

It can be shown that each such interation doubles the accuracy of yn.
The basic use of the rsqrt instruction then is to provide the initial estimate

y0. The code generated by the compiler consists of the rsqrt instruction fol-
lowed by instructions which implement a single Newton-Raphson interation to
refine that result.

2



D
RA
FT

Behavior of the rsqrt

instruction

Intel

A study was made of the results computed by the rsqrt instruction for all
positive non-zero normal Binary32 arguments. It was first verified that the
results for arguments in the range [1, 4), when suitably scaled by a power of 2
as outlined above, agreed with the results returned by rsqrt for every possible
positive normal non-zero Binary32 argument. This justifies the assumption that
only the behavior of rsqrt in [1, 4) needs to be studied. (One of the advantages
of working with the Binary32 datatype in such a restricted argument range is
that exhaustive testing is quite feasible: no test reported here took longer than
several minutes to run.)

3



D
RA
FT0.705

0.7055

0.706

0.7065

0.707

0.7075

0.708

0.7085

0.709

1.99 1.992 1.994 1.996 1.998 2 2.002 2.004 2.006 2.008 2.01

x

Intel rsqrt instruction

Result of Intel rsqrt
1/
√
x

Figure 1: Value of the rsqrt instruction on an Intel platform

Examination of the results returned by rsqrt shows that they depend only
on the sign, exponent and high-order 10 bits of the characteristic of the argu-
ment, excluding the so-called hidden bit. (The hidden bit is excluded since it
is always 1 for normal values.) Thus the low-order 13 bits of the characteristic
of an argument do not affect the result: as the arguments span a binade, the
results of the instruction are a series of steps. We can think of the output of the
instruction in terms of bins: the results consists of 1024 bins for each binade,
and each bin corresponds to the result for 8192 contiguous arguments.

Figure 1 shows this behavior. Notice that the width of the bins is constant
within a binade but changes by a factor of 2 when moving into a different binade.

Relative error plots were created as follows:

• Let each binade be divided into 1024 equal bins bi following the pattern
of the rsqrt instruction as implemented by Intel.

• For each bin bi, let

εi = max
x∈bi

∣∣∣∣F (x)− f(x)

F (x)

∣∣∣∣
where f(x) is the function being evaluated and F (x) is the reference func-
tion. In the current study, f(x) is the result of the rsqrt instruction for
the argument x and F (x) is the result of 1.0/std::sqrt((double)x).

4



D
RA
FT

• plot log2(εi) versus minx∈bi x for all bins.

The low-order 11 bits of the characteristic of all results returned by the rsqrt
instuction on Intel CPUs are zero, giving approximately 13 bits of accuracy as
shown in Figure 2. For reference, the maximum relative error of 1.5 × 2−12

documented by Intel is shown as well.

−13

−12.5

−12

−11.5

−11

1 1.5 2 2.5 3 3.5 4

lo
g 2

(ε
)

x

Intel rsqrt relative error

Relative Error
1.5× 2−12

Figure 2: Relative error the rsqrt instruction on an Intel platform

AMD

Although the characteristics of the results returned by the rsqrt instruction on
an AMD processor are somewhat similar to that on Intel CPUs, they differ in
two very important ways.

5



D
RA
FT0.70754

0.70756

0.70758

0.7076

0.70762

0.70764

0.70766

0.70768

0.7077

0.70772

0.70774

1.9966 1.9968 1.997 1.9972 1.9974

x

AMD rsqrt instruction

Value of AMD rsqrt
1/sqrt(x)

Figure 3: Relative error of the rsqrt instruction on an AMD platform

First, the steps are not all of the same width; although most are 256 argu-
ments wide, others are either 512 or 768 arguments in width.

Number of arguments in bin Frequency
256 46562
512 9421
768 44

Another way to view this though is to assume that all bins cover 256 arguments
but that there are cases where the value computed for arguments in adjacent bins
are identical. See Figure 3 for the behavior for rsqrt on AMD for x ≈ 1.997.

Second, only the low-order 7 bits of each result are zero, implying an accuracy
of approximately 17 bits. See Figure 4.

6



D
RA
FT−18

−17.5

−17

−16.5

−16

−15.5

−15

1 1.5 2 2.5 3 3.5 4

lo
g 2

(ε
)

x

AMD rsqrt instruction relative error

Figure 4: Relative error the rsqrt instruction on an AMD platform

I cannot explain why AMD chose this particular implementation for the
rsqrt instruction.

7



D
RA
FT

Code Generated for
Newton-Raphson Iteration

gcc 5.2.0 with the options -Ofast -mavx generates the following code for
1.0f/std::sqrt(x):

vrsqrtss %xmm0 , %xmm1 , %xmm1

vmulss %xmm0 , %xmm1 , %xmm0

vmulss %xmm1 , %xmm0 , %xmm0

vaddss LC0(%rip), %xmm0 , %xmm0

vmulss LC1(%rip), %xmm1 , %xmm1

vmulss %xmm1 , %xmm0 , %xmm0

This code following the vrsqrtss instruction implements the Newton-Raphson
iteration to improve the accuracy of the result returned by the rsqrt instruction:

a← rsqrt ss(x)

b← a ∗ x
c← a ∗ b = (a ∗ (a ∗ x))

d← −3.0 + c = −3.0 + (a ∗ (a ∗ x))

e← −0.5 ∗ a
f ← e ∗ d = (−0.5 ∗ a) ∗ (−3.0 + (a ∗ (a ∗ x)))

result← 0.5 ∗ a ∗ (3.0− (a ∗ (a ∗ x)))

Equivalent code is generated by icc 16.0 with the same options.
Note that the algebraically equivalent computation

result← a+ 0.5 ∗ a ∗ (1− x ∗ (a ∗ a))

should produce a more accurate result on Intel CPUs:

• the product a ∗ a is exact since the low-order 13 bits of the characteristic
of a are zero

• the round-off error in the final addition is smaller because, since x∗ (a∗a)
is close to 1.0, there is a significant alignment shift between a and 0.5∗a∗
(1− x ∗ (a ∗ a))

8



D
RA
FT

However, this comes at the cost of one additional operation.
If source code for the improved Newton-Raphson computation is compiled

with gcc -O2 -mavx -mfma, the following instructions are generated:

vrsqrtps %ymm0 , %ymm2

vmulps %ymm2 , %ymm2 , %ymm1

vfnmadd213ps .LC0(%rip), %ymm1 , %ymm0

vmulps %ymm2 , %ymm0 , %ymm0

vfmadd132ps .LC1(%rip), %ymm2 , %ymm0

Not only are fewer instructions required but the use of FMA instructions pro-
duces more accurate results because there are fewer roundings.

A comparison of the relative errors of these three methods of calculating
the Newton-Raphson iteration is shown in Figure 5. The improved calculation
results in a decrease of approximately 0.5 ulp in the relative error, and the use
of FMA provides a slight additional decrease in the relative error.

−1

−0.5

0

0.5

1

1.5

2

2.5

3

1 1.5 2 2.5 3 3.5 4

lo
g 2

(ε
)

x

Intel Ofast reciprocal square root relative error

Ofast Relative Error
Improved Ofast Relative Error

Improved FMA Ofast Relative Error

Figure 5: Relative error of Ofast reciprocal square root on an Intel platform

9



D
RA
FT

Differences Between gcc

and icc

Consider these lines in the original sample program:

float fn = n - 1.f;

float k = 0.1f + fn;

When using the option -Ofast, gcc does more aggressive constant-folding than
does icc: gcc computes k = n - 0.9f whereas icc computes k = 0.1f +

(n - 1.0f). This leads to a difference of 3 ulps in the argument passed to
std::sqrt() which accounts for the 1 ulp difference in the results. This is
unusual in that gcc is usually much more conservative than icc is its option-
izations which may affect floating-point results.

10



D
RA
FT

Possible next steps

Although the latency and throughput of the rsqrt instruction relative to the
sqrt and div instructions may change with each new processor, it may be
worthwhile for gcc to improve the code generated for the Newton-Raphson
iteration using with the rsqrt instruction, especially when FMA instructions
are available. This would result in not only increased accuracy but potentially
better performance.

For clang, it woud be worthwhile to actually implement any of these op-
timizations for x86. On Mac OS X, as of Xcode 7.1, clang -Ofast does not
make use of the rsqrt instruction.

11



D
RA
FT

Behavior of the rcp

instruction

Given this behavior of the rsqrt instruction, an investigation of the rcp in-
struction seemed a reasonable follow-on exercise because it too is not subject
to any standardization. Thus, it may well behave differently on AMD and In-
tel platforms. The investigation followed a similar path as that of the rsqrt

instruction.

Background

Consider this program:

#include <cmath >

#include <cstdio >

int main(int n, char* argv []) {

float fn = n - 1.f;

float k = 0.5f + fn;

float q = 1.f/k;

printf("%6.6a %6.6a\n",k,q);

return 0;

}

When run with no arguments, it computes the reciprocal of /0.5 in using IEEE
754 Binary32 arithmetic. When compiled with gcc 5.2.0 and the -O2 -mavx

options, the generated code uses a div ss instruction to compute the result.
However, if the options -Ofast -mavx -mrecip are used instead, the gener-
ated code computes the result using an rcp ss instruction followed by a single
Newton-Raphson interation. In this latter case, the output of the exact same
executable produces different output results depending on whether it is executed
on an Intel CPU or an AMD CPU:

• Intel: q = 0x1.fffffep+0

• AMD: q = 0x1.000000p+1

12



D
RA
FT

Reciprocal

Let x be a positive non-zero normal IEEE 754 Binary32 number with x = 2em
where 1 ≤ m < 2. Let x′ = 2−ex = m. Then 1 ≤ x′ < 2 and 1/x = 2−e/x′.

To compute 1/x′, we take an initial estimate y0 ≈ 1/x′ and use a Newton-
Raphson interation to improve that estimate. If we use Newton’s method to
find a root of the function f(y) = 1/y − x′, we obtain the recurrence

yn+1 ← yn(2− x′yn)

It can be shown that each such interation doubles the accuracy of yn.
The basic use of the rcp instruction then is to provide the initial estimate

y0. The code generated by the compiler consists of the rcp instruction followed
by instructions which implement a single Newton-Raphson interation to refine
that result.

Intel

A study was made of the results computed by the rcp instruction for positive
non-zero normal Binary32 arguments. First, it was verified that the results for
arguments in the range [1, 2), when suitably scaled by a power of 2, matched
the results returned by rcp for every possible positive normal non-zero Binary32
argument. This justifies the assumption that only the behavior of rcp in [1, 2)
needs to be studied.

13



D
RA
FT0.664

0.6645

0.665

0.6655

0.666

0.6665

0.667

0.6675

0.668

0.6685

0.669

1.495 1.496 1.497 1.498 1.499 1.5 1.501 1.502 1.503 1.504 1.505

x

Intel rcp instruction

Intel rcp
1/x

Figure 6: Value of the rcp instruction on an Intel platform

Just as with the rsqrt instruction, examination of the results shows that
they depend only on the sign, exponent and high-order 11 bits of the character-
istic of the argument. The low-order 13 bits of the characteristic of an argument
are ignored. Thus the result of the instruction consists of 2048 bins in each bi-
nade, and each bin corresponds to the result for 4096 continguous arguments.
Figure 6 shows this behavior.

In addition, the low-order 11 bits of the characteristic of all results returned
by the instuction are zero giving approximately 13 bits of accuracy as shown in
Figure 7. For reference, the maximum relative error of 1.5 × 2−12 documented
by Intel is shown as well.

The relative error plots were created in a similar way as was done for the
study of the rsqrt instruction except that there are 2048 bins each covering
4096 contiguous arguments.

14



D
RA
FT−13

−12.5

−12

−11.5

−11

1 1.2 1.4 1.6 1.8 2

lo
g 2

(ε
)

x

Intel rcp relative error

Relative Error
1.5× 2−12

Figure 7: Relative error the rcp instruction on an Intel platform

AMD

Although the characteristics of the results returned by the rcp instruction on an
AMD processor are somewhat similar to that found on Intel CPUs, they differ
in two very important ways.

15



D
RA
FT0.6812

0.6813

0.6814

0.6815

0.6816

0.6817

0.6818

0.6819

1.4666 1.4668 1.467 1.4672 1.4674 1.4676 1.4678 1.468

x

AMD rcp instruction

AMD rcp
1/x

Figure 8: Value of the rcp instruction on an AMD platform

First, the steps (viz., bins) are not all of the same width; although most are
256 arguments wide.

Number of args in bin Frequency
256 32636
512 66

See Figure 8 for the behavior for rcp on AMD for x ≈ 1.467.
Second, only the low-order 7 bits of each result are zero, implying an accuracy

of approximately 17 bits. See Figure 9.

16



D
RA
FT−17.5

−17

−16.5

−16

−15.5

−15

−14.5

1 1.2 1.4 1.6 1.8 2

lo
g 2

(ε
)

x

AMD rcp instruction relative error

Figure 9: Relative error the rcp instruction on an AMD platform

Again, I cannot explain why AMD has chosen this particular implementa-
tion.

17



D
RA
FT

Code Generated for
Newton-Raphson Iteration
Following rcp

gcc 5.2.0 with the options -Ofast -mavx -mrecip generates code similar to
the following for 1.0f/x:

vrcpps %ymm0 , %ymm1

vmulps %ymm0 , %ymm1 , %ymm0

vmulps %ymm0 , %ymm1 , %ymm0

vaddps %ymm1 , %ymm1 , %ymm1

vsubps %ymm0 , %ymm1 , %ymm1

The code following the vrcpss instruction implements a Newton-Raphson iter-
ation to improve the accuracy of the result returned by the rcp instruction:

a← rcp ss(x)

b← a ∗ x
c← a ∗ b = a ∗ (a ∗ x)

d← a+ a = 2 ∗ a
result← d− c = (2 ∗ a)− (a ∗ (a ∗ x))

The Newton-Raphson interation can also be written as

yn+1 ← yn + yn(1− x′yn)

and implemented by the instructions

vrcpps %ymm0 , %ymm2

vmulps %ymm2 , %ymm0 , %ymm0

vmovaps .LC0(%rip), %ymm1

vsubps %ymm0 , %ymm1 , %ymm0

vmulps %ymm2 , %ymm0 , %ymm0

vaddps %ymm2 , %ymm0 , %ymm0

18



D
RA
FT

Although this “improved” computation does not seem to produce a more accu-
rate result on Intel CPUs, it does have noticeably better performance. Also, this
form of the calculation can be implemented very efficiently with FMA instruc-
tions. If the source code is compiled with gcc -O2 -mavx -mfma, the following
instructions are generated:

vrcpps %ymm0 , %ymm1

vfnmadd213ps .LC0(%rip), %ymm1 , %ymm0

vfmadd132ps %ymm0 , %ymm1 , %ymm1

Not only are fewer instructions required but the use of FMA instructions pro-
duces more accurate results because there are fewer roundings.

A comparison of the relative errors of the compiler-generated method of
calculating the Newton-Raphson iteration with the improved FMA version is
shown in Figure 10. The improved FMA calculation results in a decrease of
approximately 0.5 ulp in the relative error. See Table A.1 for a comparison of
the timings of these various methods.

−1

−0.5

0

0.5

1

1.5

1 1.2 1.4 1.6 1.8 2

lo
g 2

(ε
)

x

Intel Ofast rcp relative error

Ofast Relative Error
Improved FMA Ofast Relative Error

Figure 10: Relative error of Ofast reciprocal calculation on an Intel platform

19



D
RA
FT

Possible next steps

Although the latency and throughput of the rcp instruction relative to the
div instruction may change with each new processor, it may be worthwhile
for gcc to improve the code generated for the Newton-Raphson iteration using
with the rcp instruction, especially when FMA instructions are available. This
would result in not only increased performance but, in the case where FMA
instructions are availble, improved accuracy.

20



D
RA
FT

Appendix A

Performance Information

Only relatively crude performance information has been gathered by timing var-
ious artifical single-threaded test programs using the chrono library. (Use of this
library requires that the programs be compiled with the option -std=c++11.)
Corrections for loop and call overheads were not made.

Results were measured for the following function variations:

• scalar Ofast

• packed Ofast with compiler-generated Newton-Raphson iteration code

• packed Ofast with improved Newton-Raphson interation code

• packed Ofast with improved Newton-Raphson interation code utilizing
FMA instructions

The tests were run on olhswep03.cern.ch, a system with 4 Intel(R) Xeon(R)
CPU E5-2698 V3 @ 2.30GHz processors (16 Haswell cores each, HT enabled),
and 64 GB of memory.

The value reported is “mega-results per second”: the number of results
calculated per second scaled by 106.

Function rsqrt rcp

Scalar 303 257
Packed 1314 1308
Improved 2923 3047
FMA 3049 3048

Table A.1

I do not understand why the “packed” versions are so much slower than the
“improved” versions. An explanation for this difference needs to be found.

21


